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Abstract
Program synthesizers—tools that automatically generate code based on a user-provided specification—aim
to lighten the burden of programming by ideally swapping the cost of manually performing a task or writing
code for a task with the cost of writing a specification for that task. A concern of fundamental importance
to the usability of these synthesizers is therefore to ensure that the specification cost is less than the manual
cost. In this short paper, we discuss methods from human-computer interaction, techniques from software
engineering and data mining, and theories from cognitive science that could directly help answer the question
of what tasks are amenable to having specifications derived from users’ existing behaviors and processes rather
than having users go out of their way to provide something new to the synthesizer—thereby ensuring the cost
of specification is appropriately lower. We hope that this discussion is useful for synthesis designers and
sparks interest in further investigation into how we can derive specifications from users’ existing behaviors and
processes.
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1 Introduction
Across many domains, experts are increasingly faced with the need for automation, from large-scale
document processing in law, to analyzing DNA sequences in biology, to describing highly concurrent
systems in traditional software engineering, to emerging complex fields like proof engineering in pro-
gram verification. Typically, solving these tasks will require some form of manual effort (e.g., manually
coding a solution, or simply manually analyzing data by hand), which we can imagine has some tem-
poral or cognitive cost associated with it; we might loosely associate some cost ManualCost(t) to
each task t in a domain.

The promise of program synthesis is for the computer to automatically write code given some
form of specification that describes the desired solution. When it works, it (very roughly) swaps the
cost of manually achieving an outcome for writing the specification for the outcome; for a task t, we
can call this new cost SpecificationCost(t).

Barring any additional benefits a program synthesizer may provide (e.g. exposing the user to a
new way of thinking), a fundamental assumption behind program synthesizers is therefore that for the
tasks t in a given domain, we have

SpecificationCost(t) ≤ManualCost(t).

The question then is: When is this inequality achieved?1

One way to ensure that the manual cost of a task is an upper bound to the specification cost is to
derive the specification itself from the user’s typical manual process. Then, any effort that the user
puts into crafting a specification is work that would have needed to be done anyway manually. (It
also means that the user does not need to learn any new interfaces or interaction models.) Jayagopal,
Lubin, and Chasins [1] dubbed this kind of specification an incidental specification and provide insights
into its impact on the learnability of program synthesizers by novice programmers, but they do not
provide any guidance on how to actually find tasks that readily admit these kinds of specification for
synthesis designers.

1 In this paper, we focus on how to achieve this specific inequality, but we emphasize that this inequality is often necessary
but certainly not sufficient for when synthesis could be useful. We refer to the following blog post by Michael Greenberg
for a discussion of generalizing this inequality into a relatively more sufficient condition for when synthesis could be
useful: http://www.weaselhat.com/2022/05/24/when-is-program-synthesis-worthwhile/.
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In this short paper, we contribute a discussion of a few avenues that we find particularly appropriate
in the search for incidental specifications: methods from human-computer interaction, techniques
from software engineering and data mining, and theories from cognitive science. We hope that this
discussion is useful for synthesis designers and sparks interest in brainstorming and collecting a plurality
of methods for finding useful synthesis specifications that can be derived from users’ existing behaviors
and processes.

2 Avenues of Searching for Incidental Specifications
2.1 Human-Computer Interaction Methods

Incidental specification is effective for building program synthesizers because programmers’ normal
behavior naturally encapsulates the specification. Thus, when searching for opportunities for program
synthesis via incidental specification, it is critical to first understand programmers’ behavior without
the use of program synthesis.

Research in the field of human-computer interaction (HCI) offers some insight into how we may
study programmers’ behavior. In this section, we examine five HCI-inspired techniques for conducting
studies of programmer behavior, and weigh their advantages and disadvantages through the lens of
designing a program synthesizer with incidental specification.

2.1.1 Fixed-Task In-Lab Think-Aloud Studies
One method of examining programmer behavior involves assigning study participants a programming
task and asking them to think out loud while writing code in a controlled lab environment. Thinking
aloud enables synthesizer designers to learn about participants’ thought processes while coding, which
may help match specifications to the ways programmers already reason about their code. A fixed-
task in-lab study allows researchers to analyze participants’ responses to controlled tasks and enables
comparison between different participants’ approaches to the same problems.

At the same time, this type of study takes place in a different, more regulated environment than
participants’ normal working conditions, and results may be biased by the types of tasks chosen
for the study. As such, fixed-task in-lab studies may grant investigators control over the testing
environment at the cost of ecological validity. This increased control may be helpful for developing
program synthesizers for specific tasks. However, for more open-ended studies of program synthesis
applications, these studies may not generalize well to real-world settings.

The use of fixed-task in-lab think-aloud studies of programmers is well-documented; for exam-
ple, Brandt et al. applied in-lab think-aloud methodology to investigate programmers’ use of web
resources [2], while Vaithilingnam, Zhang, and Glassman evaluated the usability of large language
model-based program synthesizers [3].

2.1.2 Contextual Inquiry
A similar technique for directly observing participants is contextual inquiry, wherein researchers act as
apprentices to the participants and observe their day-to-day work [4]. Unlike an in-lab study, contextual
inquiry takes place in the participant’s everyday work environment, and the work performed is not
assigned by the investigator.

Contextual inquiry offers advantages and disadvantages opposite to those of a fixed-task in-lab
study: results are placed in the context of participants’ normal work environment, but the study is
less directed than one in a controlled lab. Thus, contextual inquiry may be most useful for broadly
identifying program synthesis applications without a specific task in mind.

Like in-lab studies, contextual inquiry is also fairly common in studies of programmer behavior;
see, for example, Ko’s study of expert programmers in an event-based environment [5].

2.1.3 Design by Immersion
A third approach involves having the researchers themselves participate in the work of the domain of
interest. This technique, called design by immersion, originates in visualization research but may also
be applicable to designing programming tools [6].
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Design by immersion gives researchers a firsthand perspective on programmers’ experiences but
can require many months at a time to complete. Program synthesizer designers using immersion must
fully familiarize themselves with the skills of their users. For some researchers already familiar with
their target domain, this may not require much additional learning; in these cases design by immersion
may lead to valuable insights without too much overhead.

To the authors’ knowledge, design by immersion is not common in programming languages research
or studies of programmer behavior as a whole; however, we believe that similar techniques may have
potential to yield valuable insights.

2.1.4 Discourse Analysis
A fourth HCI method involves drawing conclusions from existing discourse about programming tasks.
Discourse analysis can take many different forms: for example, a researcher might read online forums
or watch coding livestreams to understand how users speak or think about tasks. By understanding
the way these tasks are spoken about and described, researchers may be able to identify opportunities
for program synthesis with incidental specification models that leverage users’ existing tendencies.

Unlike think-aloud studies and contextual inquiry, discourse analysis often requires no resources for
finding participants and running a study and many sources—like conversations on online forums—are
free to access. However, finding the right resources to analyze (and performing the analysis) can
require significant effort on the part of the researcher. Without the context afforded by controlled
studies or contextual inquiries, conclusions drawn from discourse analysis may also be harder to
generalize, requiring the reader to “fill in the blanks” to provide the context.

Examples of discourse analyses of programmer behavior exist in the literature; see, for example,
Zhang et al.’s study of developers of deep learning applications [7].

2.1.5 Natural Programming
A final HCI technique that may be useful is the “natural programming” design process, which em-
phasizes understanding users’ language and thinking processes while solving problems rather than
how they use existing tools [8]. Incorporating natural programming could involve observing users’
non-coding approaches to solving a problem, including their language and conceptual ideas.

Because tools that reflect the way users naturally think about their task may be easier to operate,
this may be attractive for designing more accessible program synthesizers. One major concern for
our purposes, however, is that a natural programming approach investigates how users might ideally
solve a task, not how they would currently solve it using the tools available to them. In our case,
the specific implementation patterns that users already perform are critical as they are what comprise
the incidental specifications we are searching for. As a result, natural programming may be best
used when combined with one of the previously mentioned techniques, like contextual inquiry or other
in-lab studies.

2.2 Software Engineering and Data Mining Techniques
We now discuss how techniques from the fields of software engineering and data mining could be used
to find incidental specifications.

2.2.1 Commit Mining
One possible method of determining incidental specifications is to analyze commit histories from a
version control website like GitHub. This has the benefit of needing no new input from the programmer,
since this would just use the regular sequence of commits made by them. Each commit could be
categorized as an addition, meaning new code or functionality was created; a removal; or a refactor,
meaning changes that do not change semantics of the program; or some combination. Refactors
in particular can be seen as improvements or refinements of a program, which gives one form of
incidental specification: the initial implementation can be thought of as a more direct or easier-to-
produce artifact for the programmer, whereas the refactored code is more difficult to achieve but
somehow more desirable. If we can identify refactors as well as patterns contained in them, we may
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therefore be able to view the “before” code as an incidental specification for the “after” code, as
described by Lubin and Chasins in the context of functional programmers’ code authoring [9].

However, a major downside of this approach is that extracting this information from commits is at
best very difficult, and often impossible. For example, commits are often too coarse-grained, too fine-
grained, or too nonlinear to readily correspond to individual refactors, and determining exactly when
a change is a refactor requires deep reasoning about the semantics of a program. These drawbacks
motivate our next section on data mining program histories obtained via editor telemetry.

2.2.2 Data Mining Program Histories
Although program commit mining as described in the previous section has the advantage that each
commit is easy to parse using off-the-shelf tooling, researchers do not get to see the fine-grained
structure of the process of how the programmer composes the program. In this section, we provide
some background on relevant techniques in data mining to overcome this challenge, well as a brief
discussion of an early-stage project we have worked on based on some of these techniques.

Specifically, our project explores using pattern mining to extract information about a program’s
history over time (collected via editor telemetry) to try to understand how the user constructed the
program. We note that this is related to but distinct from code specification mining (as in Daikon [10])
or code pattern extraction (as in GrouMiner [11]), as we are interested in patterns in programmers’
construction processes, not final programs.

Any such system that aims to understand user behavior via collecting and analyzing edit histories
must face at least the three following challenges:

1. How to parse incomplete programs, as most of the recorded program states will be syntactically
incomplete [12], [13];

2. How to extract events from sequences of parses; and

3. How to determine which events are recurring and meaningful, which is a sign of a possible incidental
specification.

In the remainder of this section, we provide an overview of how we tackled these three areas in our
beginning-stage prototype system as an example, which we hope will inspire others to think about
how to data mine program histories.

An Example
1. Parsing Incomplete Programs. We handled parsing incomplete programs by using an Earley parser

with Aho’s error correcting grammar [14]. In this formalism, errors in the grammar are fixed with
additions, removals, and substitutions. Then, the parse tree is reconstructed using an algorithm
from Graham and Harrison [15, Chapter 3] with a modification to account for the costs from the
error correcting grammar. Finally, after translating the parse trees of these incomplete programs
to abstract expression trees (ASTs) with holes, we have a suitable representation of the history of
a computer program. In particular, the history is encoded as a list of ASTs, and each edit can be
extracted by diffing neighboring ASTs.

2. Event Extraction. To determine the events that occurred over time, we extracted features from
the diffs of neighboring ASTs with holes. The features that we analyzed only depended on single
diffs, but there are more nuanced features which look at multiple diffs (for example, whether
neighboring edits are of the same type); these more complicated features might allow us to analyze
deeper patterns in program writing. Another possibility we considered is synthesizing features
in a feedback-driven way, automatically optimizing feature extraction via inductive synthesis or
reinforcement learning based on what the system ranks as “interesting” (as described next).

3. Pattern Mining Events. We used sequential pattern mining to determine which sequences of
extracted events were recurring and meaningful. Broadly speaking, the goal of sequential pattern
mining is to discover interesting and meaningful patterns and rules on data with “time or sequential
ordering information” [16]. In general, starting with a sequence database consisting of multiple sets
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of sequential data (such as extracted events), sequential pattern mining algorithms find patterns
which correspond to subsequences of events. The relevant metric for our use-case is the support of
a pattern, which is a measure of how often it occurs. Generally the minimum support minsup is a
parameter in a pattern mining algorithm to determine what subsequences occur frequently enough
to be considered meaningful.

Two variants of pattern mining stood out as particularly suitable for our purposes. The first is
episode mining, which is a pattern mining variant that looks within a single sequence of events
instead of multiple sequences. The aim is to find rules of the form X → Y called episode rules,
which represent X appearing before Y within a set time window. Another related variant is periodic
pattern mining, which is similar to episode mining in that it looks only at a single sequence of
events, but it considers periodically repeating patterns [16]. These seemed to be the best choices
for our problem, since our program histories are encoded as a sequence of edits.

For our implementation, we used SPMF, an off-the-shelf open source data mining library which
consists of many pattern mining algorithms [17]; in particular, we used its implementation of the
POERM (Partially Ordered Episode Rule Miner) [18] sequential pattern mining algorithm.

2.3 Cognitive Science Theories
In this last section, we describe how two prominent cognitive science theories can help narrow in
on promising incidental specifications. We hope that others will build upon these connections with
cognitive science and uncover how other theories can aid in the search for incidental specifications.

2.3.1 Cognitive Load
Cognitive load theory describes how people keep information in their heads and access it while per-
forming a task. Working memory is the section of memory that contains pieces of information actively
being used and has been shown to only have capacity for approximately seven items at a time [19].
The rest of the information must be cycled in and out of long-term memory, and can be stored and
retrieved more efficiently using organizational structures called schemas. For instance, when program-
mers are writing code, they are keeping many pieces of information in their mind at a time, such as
various syntactic rules, design patterns, and domain-specific concepts that they are implementing [20],
[21]. The cognitive load depends on several factors related to working memory, primarily the maxi-
mum amount of information that must be held in working memory at any given time [22]. Within the
theory of cognitive load, there also exists the concept of intrinsic and extraneous load. An intrinsic
cognitive load refers to the inherent mental difficulty of the task at hand, whereas an extraneous
cognitive load is one that relates to added difficulty in how the task is being solved, or how a learner
is being taught the information.

With this framework in mind, we can consider program synthesis tasks by an approximation of
the cognitive load required to perform them and look for potential incidental specifications by finding
tasks that admit a less user-preferable solution with approximately low cognitive load and a more
user-preferable solution with approximately high cognitive load.2 Then, when users choose the less
preferable (but easier) solution, synthesis could pick up on the incidental specification and return the
preferable solution at, ideally, no additional cognitive cost. Although measuring cognitive load directly
is challenging, looking for synthesis tasks in this light can serve as a rough guide for finding incidental
specifications.

An Example Concretely, one program synthesis task that we have ourselves explored is the task of
NumPy synthesis. NumPy synthesis in this context refers to the problem of translating code written
in native Python and translating it into vectorized NumPy code. This task can be very challenging
task for novices (and even experts), but the runtime speedup can be significant.

There may be a high cognitive load associated with this task, as there is a need to keep many

2 As in Section 2.2.1, the less preferable (but easier) solution can serve as an incidental specification for the more preferable
(but harder) solution.
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different NumPy functions in one’s working memory to try and figure out which ones will be useful
for solving the problem at hand. The kinds of programs we looked at were fairly simple programs,
operating over large arrays. In this case, the intrinsic cognitive load might be relatively small, due
to the simplicity of the operations being done on the data. However, the need to translate it into
NumPy might create a much higher extraneous cognitive load.

In this case, the incidental specification is simply the original Python program, which can then be
translated into NumPy using a synthesis technique such as verified lifting [23], [24]. The synthesis
engine is provided specifications for the NumPy functions, separate from anything the individual
programmer provides. Because the program contains all the information needed to do the translation,
there is no need for the programmer to do anything else.

2.3.2 Problem Decomposition
Another widely-studied area of cognitive science that can be applied to this study of incidental specifi-
cations is the area of problem decomposition. The way that people break down and solve problems is
of great importance when searching for problems that are well-suited for applying program synthesis.
One important distinction that has been made when studying problem decomposition in the context
of programming are the two strategies of hierarchical and opportunistic programming [25]. Hierar-
chical programming refers to a top-down, structured method of programming whereby components
are implementing in descending levels of abstraction in a fashion that is designed ahead of time. Op-
portunistic programming, on the other hand, refers to a style of moving between different levels of
abstraction and changing the approach dynamically as the design evolves.

With this theoretical framework in mind, we can search for incidental specifications by analyzing
prospective tasks and specifications and how they support the existing problem decomposition strate-
gies that are frequently used for that task. When a programming task lends itself to hierarchical
programming, there may often be some design that the programmer is following to move through the
levels of abstraction in a top-down fashion. This design process can provide additional information
about the desired program that could aid in constructing a specification. If the programmer is fol-
lowing such a pattern anyway (including creating artifacts like interface files or function stubs as well
as top-down program sketches), this would make a specification that used this design an incidental
specification.

On the other hand, if a task naturally lends itself to opportunistic programming, then the synthe-
sizer will have less information from which to derive an incidental specification. If the programmer is
jumping between different levels of abstraction—for example, by writing functions one at a time—the
specification must therefore be derived from only the information within that function. While it may
be possible to derive an incidental specification from this information, it may also be more difficult
to do so; nevertheless, an understanding of the mode of problem decomposition that users typically
undergo when solving problems in a domain may aid synthesis designers in leveraging users’ incidental
behaviors.

3 Conclusion
We conclude by stressing that these avenues are by no means exhaustive and only begin to scratch
the surface of how we can leverage users’ existing behaviors and processes in program synthesis. So,
we hope that by asking the following question, we can make deeper interdisciplinary collaborations
and uncover exciting new user-centered insights for program synthesis:

With your unique background, how would you search for incidental specifications?
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